
ICS 104 - Introduction to Programming in Python and C

Programming with numbers and StringsProgramming with numbers and Strings

Reading AssignmentReading Assignment
Chapter 2 Sections 1, 2, 4 and 5.

Chapter Learning OutcomesChapter Learning Outcomes
At the end of this chapter, you will be able toAt the end of this chapter, you will be able to

de�ne and use variables and constants
write arithmetic expressions and assignment statements
understand the properties and limitations of integers and �oating-point numbers
appreciate the importance of comments and good code layout
write arithmetic expressions and assignment statements
create programs that read and process inputs, and display the results
learn how to use Python strings

VariablesVariables

Why do we need variables?Why do we need variables?
To carry out computation, we need to store values in order to use them later on.
These values are stored in variables.
Let us try to comprehend the use of variables by solving the following problem:

Soft Drinks: Which is more Economic?Soft Drinks: Which is more Economic?
Soft drinks are sold in cans and bottles.
A store offers a six-pack of 12-ounce cans for the same price as a two-liter bottle.
Find the volume (in liters) of a six-pack of soda cans and the total volume of a six-
pack and a two-liter bottle.

Note that 12 �uid ounces equal approximately 0.355 liters.

De�ning VariablesDe�ning Variables
A variable is a storage location in a computer program.
Each variable has a name and holds a value.

Just as a parking space has an identi�er J053 and contents car

Assignment StatementsAssignment Statements
An assignment statement is used to place a value into a variable

In []: cansPerPack = 6

How does the assignment statment work?
The right hand side of the = sign is �rst evaluated (to the value 6).
The value is assigned to the variable on the left hand side of the = sign (to
the variable cansPerPack).

Once a variable is de�ned, it can be used in other statements

In []: print(cansPerPack)

If an existing variable is assigned a new value, that value replaces the previous
contents of the variable.

In []: cansPerPack = 8

In []: print(cansPerPack)

Assignment is not Equality in AlgebraAssignment is not Equality in Algebra
Is the statement

correct in Algebra?

 cansPerPack = cansPerPack + 2

How about in Python?

In []: cansPerPack = 8
cansPerPack = cansPerPack + 2
print(cansPerPack)

So, how does the assignment cansPerPack = cansPerPack + 2 execute in python?

First, the right hand side is executed
This is done by fetching the current value of the variable cansPerPack
Then, carrying out the addition

Second, the value of the addition is stored in the variable cansPerPack

Number TypesNumber Types

Values and TypesValues and Types
2, **"Hello World"** and **8.4** are values
Each value belongs to a **data type**

2 is an integer **int**
"Hello World" is a string **str**
8.4 is a �oat **�oat**
2 and **8.4** are called number literals.

Why Data Types?Why Data Types?
A data type of a value determines

how the data type is represented in the computer, and
what operations can be performed on that data.

Two Categories of Data Types in PythonTwo Categories of Data Types in Python
Primitive data type

A data type provided by the language itself (e.g. **int**)
User-de�ned data type

A data type de�ned by the programmer (covered in Chapter 9: Objects
and Classes)

Number literals in PythonNumber literals in Python

The value determines the type of the variable.
For example, the following piece of code is correct, but not recommended

In []: taxRate = 5
print(taxRate)
taxRate = 5.5
print(taxRate)
taxRate = "five point five"
print(taxRate)

This is not a good idea, as it may lead to an error if you use the wrong operation on
the variable

In []: taxRate = taxRate + 10

Once a variable is initialized with a value of a type, keep storing values of the same
type.

Rules for Variable NamesRules for Variable Names
Names must start with a letter or the underscore (_) character.
The remaining characters (if any) must be letters, digits or underscores.

Symbols such as ? or % cannot be used in a variable name.
Spaces cannot exist within a variable name.

Names are case sensitive.
Reserved words by python cannot be used as variable names. (e.g., **if** and
class)

Which of the following names are proper variable names? canVolume1 , x ,
CanVolume , 6pack , can volume , class , ltr/fl.oz

canVolume1 is proper

x is proper

CanVolume is proper

6pack is not proper

can volume is not proper

class is not proper

ltr/fl.oz is not proper

Recommended Variable Name ConventionsRecommended Variable Name Conventions
These are not strict rules for variable names, but are rules of good taste that you
should respect when writing code.

Use a descriptive name, such as cansPerPack, than a terse name, such as

cpp
If the variable name consists of more than one word, start the
word with a capital letter, as shown above.

A variable starts with a small letter
A constant consists of all capital letters, where words are separated by the
underscore _ character, such as CAN_VOLUME
A user de�ned data type starts with a capital letter (as we will see later),
such as GraphicsWindow.

Therefore,Therefore,

ConstantsConstants
A constant variable, or simply a constant, is a variable whose value should not be
changed after it has been assigned an initial value.
Some languages provide an explicit mechanism of declaring constants.

Hence, any attempt to change it after it has been assigned generates a
syntax error.

Python leaves it to the programmer to make sure that constants are not changed.
Hence, the use of all capital letters for naming constants tells you and
other programmers that you should not change the value of this variable
once it is assigned.

Constants can make your code much more understandable.

For example, compare the following two statements:
totalVolume = bottles * 2
totalVolume = bottles * BOTTLE_VOLUME

Note that in the case where the bottle volume is changed from 2 to 2.5, then
in the �rst case, you need to change every line of code that has volume 2 to
2.5.
in the second case, all you need to do is change the value of the constant
BOTTLE_VOLUME to 2.5 in one line ONLY. Every other occurrence of
BOTTLE_VOLUME in the code will automatically have the new volume

value.

CommentsComments
As your programs get more complex, you should add comments, explanations for
human readers of your code.

In []: CAN_VOLUME = 0.355 # Liters in a 12-ounce can

This comment explains the signi�cance of the value 0.355 to a human reader.

Python's interpreter does not execute comments at all.
It ignores everything from a # delimiter to the end of the line.

Why Write Comments?Why Write Comments?
Helps programmers who read your code understand your intent.

Helps you when you review your code (after some time).

How to Write Comments?How to Write Comments?
Provide a comment at the top of your source �le that explains the purpose of the
program.

The textbook follows the following style:

In []: ##
This program computes the volume (in liters) of a six-pack of soda cans.
#

Time to Solve the Problem at the Beginning of thisTime to Solve the Problem at the Beginning of this
ChapterChapter

Soft Drinks: Which is more Economic?Soft Drinks: Which is more Economic?
Soft drinks are sold in cans and bottles.
A store offers a six-pack of 12-ounce cans for the same price as a two-liter bottle.
Which one should you buy?

Solution StepsSolution Steps
Compute the totalVolume you get when you buy a six-pack

De�ne CAN_VOLUME and the number of cansPerPack
totalVolume = cansPerPack * CAN_VOLUME
print the totalVolume

Now you can compare the totalVolume to the value 2.0 and determine which one
to buy

In []: ##
This program computes the volume (in liters) of a six-pack of soda
cans and the total volume of a six-pack and a two-liter bottle.

Liters in a 12-ounce can and a two-liter bottle.
CAN_VOLUME = 0.355
BOTTLE_VOLUME = 2

Number of cans per pack.
cansPerPack = 6

Calculate total volume in the cans.
totalVolume = cansPerPack * CAN_VOLUME
print("A six-pack of 12-ounce cans contains", totalVolume, "liters.")

Calculate total volume in the cans and a two-liter bottle.
totalVolume = totalVolume + BOTTLE_VOLUME
print("A six-pack and a two-liter bottle contain", totalVolume, "liters.")

Final Tips on VariablesFinal Tips on Variables
Do not use unde�ned variables

canVolume = 12 * literPerOunce # Error
literPerOunce = 0.0296

Choose descriptive variable names
canVolume is better than cv

Do not use magic numbers
totalVolume = cansPerPack * 0.355

2.2 Arithmetic2.2 Arithmetic

Basic Arithmetic OperationsBasic Arithmetic Operations
Python supports addition +, subtraction -, multiplication * and division /
+ - * / are called operators
The combination of variables, literals, operators, and parentheses is called an
arithmetic expression
For example, the mathematical formula is written in python as (a + b) / 2

Note that the parentheses are used to determine in which order the parts
of the expression are computed.
For example, which mathematical formula is a + b / 2?

Python uses the exponential operator to denote the power operation.
For example, is a ** 2

a+b

2

∗∗

a
2

Precedence of Arithmetic OperatorsPrecedence of Arithmetic Operators
Python uses the precedence rules for algebraic notation

Precedence Operator(s) Description

1 Parentheses

2 Power

3 Multiplication and Division

4 Addition and Subtraction

()

∗∗

∗, /

+, −

Order of Evaluation of Arithmetic OperatorsOrder of Evaluation of Arithmetic Operators
Addition, subtraction, multiplication and division are left associative, i.e. they are
evaluated from left to right.

For example, 10 + 2 + 3 is evaluated as

The power operation is right associative, i.e. it is evaluated from right to left.

For example, 10 ** 2 ** 3 is evaluated as which is the same as

(10 + 2) + 3 = 15

102
3

= 100000000108

ExampleExample
The mathematical expression becomes

The expression is analyzed as follows

b × (1 + r

100
)n

b * (1 + r / 100) ** n

Floor Division and RemainderFloor Division and Remainder
Division of two integers results in a �oating-point value

7 / 4 yields 1.75
The �oor division operator // when applied on positive integers computes the

quotient and discards the fractional part.
7 // 4 yields 1

The modulus operator % can be used to get the remainder of the �oor division.

7 % 4 yields 3, the remainder of the �oor division of 7 by 4.

Some also call it modulo or mod

Floor Division and RemainderFloor Division and Remainder

Calling FunctionsCalling Functions
We have been using the print function to display information, but there are many
other functions available in Python.
Most functions return a value.

i.e., when the function completes its task, it passes a value back to the
point where the function was called.
For example, the call abs(-123) returns the value 123.

The value returned by a function can be stored in a variable.
distance = abs(x)
Note that x is called the argument of the abs function.

It can also be used anywhere that a value of the same type can be used
print("The distance from the origin is ", abs(x))

Arguments of a FunctionArguments of a Function
When calling a function, you must provide the correct number of arguments.

abs(-10, 2) or abs() will generate an error.

Hence, the abs function requires exactly one argument.

In []: abs(-10)

Some functions have optional arguments that you only provide in certain situations
For example, in the round function

round(7.624) returns the nearest integer, i.e. 8
round(7.624,2) returns the nearest �oating-point with 2

decimal digits, i.e. 7.62

In []: print(round(7.624))
print(round(7.624,2))

Some functions take an arbitrary number of arguments
For example, the max and min functions.

min(7.25, 10.95, 5.95, 6.05, 8) returns the minimum of

the function's arguments; in this case the number 5.95

In []: min(7.25, 10.95, 5.95, 6.05, 8)

Calling FunctionsCalling Functions

LibrariesLibraries
A library is a collection of code that has been written and translated by someone
else, ready for you to use in your program.

A standard library is a library that is considered part of the language and
must be included with any Python system.

Python’s standard library is organized into modules.
Related functions and data types are grouped into the same module.

Mathematical FunctionsMathematical Functions
Python’s math module includes a number of mathematical functions.
You must import it before you can use any of its functions

Note that you can use the print function without the use of import, since

it is one of the built-in functions (part of the Python language and can be
used directly in your programs).

In []: from math import sqrt
y = sqrt(25)
print("y = ", y)

To import more than one function from math, use from math import *

Arithmetic Expressions ExamplesArithmetic Expressions Examples

Student ActivityStudent Activity
The volume of a sphere is given by

If the radius is given by a variable radius that contains a �oating-point value, write a
Python expression for the volume.

V = π
4

3
r
3

In []: # Volume Expression
radius = 2.4

2.4 Strings2.4 Strings
A string is a sequence of characters

Characters include letters, numbers/digits, punctuation, spaces, special
symbols and so on.

A string literal denotes a particular string (e.g. "Hello")
Just as a number literal (e.g. 34) denotes a particular number.

String literals are speci�ed by enclosing a sequence of characters within a
matching pair of either single or double quotes.

In []: print("This is a string. ", 'So is this.')

How can I form the strings I'm a student or He said: "You did it!"?

In []: print("I'm a student", 'He said: "You did it!"')

The number of characters in a string is called the length of the string.
For example, "Harry" is of length _____ and "World" is of length ______
An empty string is a string with no characters. It is of length zero and is
written as "" or ''

Python's len function returns the length of the argument string.

In []: length = len("World!")
print(length)

String ConcatenationString Concatenation
Given two strings such as Ahmad and Saleem, you can concatenate them to one long

string.

In []: firstName = "Ahmad"
secondName = "Saleem"
name = firstName + secondName
print (name)

Note that if one of the operands of the + operator is a string, then all of them should

be strings, otherwise a syntax error will occur.

In []: print("The character with value 1710 is the ", chr(1710))

String RepetitionString Repetition
Given a string such as -, you can repeat it n times, where n is an integer using the

string repetition operator *

In []: dashes = "-" * 50
print(dashes)

Converting between Numbers and StringsConverting between Numbers and Strings
Since you cannot concatenate a string and integer, Python provides the str
function to convert an integer to a string.

In []: id = 2019873410
email = "s" + str(id) + "@kfupm.edu.sa"
print(email)

Conversely, you can turn a string representing a number into its corresponding
numerical value using the int and float functions.

In []: id = int("1729")
price = float("17.29")
print("id is", id, " and price is", price)

Strings and CharactersStrings and Characters
Strings are sequences of Unicode characters.

Individual characters of a string can be accessed based on their position in the
string

The position is called the index of the character.
The index starts from position 0, followed by 1 for the second character, ...
and so on.

name = "Harry"

In []: name = "Harry"
first = name[0]
last = name[4]
print(first,last)

The index value must be within the valid range of character positions
0 .. len(name)-1

otherwise, an "index out of range" exception will be generated at run time.

Student ActivityStudent Activity
What are the results of the following statements

In []: string = "Py"
string = string + "thon"

In []: print(string)

print ("Please" + " enter your name: ")

In []: print("Please" +
 " enter your name: ")

What is the result of the following statements

In []: team = str(49) + "ers"

In []: print("team = ", team)

In []: greeting = "H & S"
n = len(greeting)

In []: print("n = ", n)

In []: string = "Harry"
n = len(string)
mystery = string[0] + string[n - 1]

In []: print(mystery)

2.5 Input and Output2.5 Input and Output
Asking the user to provide input values makes programs more �exible.

As opposed to having �xed values.

For example, You will have to change the values of first and second in the

program below every time you would like to use different values.

In []: ##
This program prints a pair of initials.

Set the names of the couple.
first = "Rodolfo"
second = "Sally"

Compute and display the initials.
initials = first[0] + "&" + second[0]
print(initials)

When a program asks for user input, it should �rst print a message (called a prompt)
that tells the user which input is expected.
In Python, displaying a prompt and reading the keyboard input is combined in one
operation.

In []: ##
This program obtains two names from the user and prints a pair of initials.

Obtain the two names from the user.
first = input("Enter your first name: ")
second = input("Enter your significant other's first name: ")

Compute and display the initials.
initials = first[0] + "&" + second[0]
print(initials)

Note that the output of the input function is always a string.

Reading Numerical InputReading Numerical Input
What if we need to read a numerical input?

Use the string conversion functions int and �oat on the output string

In []: userInput = input("Please enter the number of bottles: ")
numberOfBottles = int(userInput)
bottleVolume = float(input("Enter the volume of each bottle: ")) # preferred style
print("The number of bottles = ", numberOfBottles, " and the bottle volume = ", bottleVo
lume)

Formatted OutputFormatted Output

Formatting Floating Point ValuesFormatting Floating Point Values
When you print the result of a computation, you often want to control its
appearance.

Instead of Would Like to Print

Price per liter: 1.215962441314554 Price per liter: 1.22

We can do that through the string format operator %

The following command displays the price with two digits after the decimal point:

In []: price = 1.215962441314554
print("%.2f" % price)

You can also specify a �eld width (the total number of characters, including spaces)

In []: price = 1.215962441314554
print("%10.2f" % price)

%10.2f is called a format speci�er.

See what happens when you play with the values of the format speci�er.

Formatting Integer and String ValuesFormatting Integer and String Values
Use %d for integer values

In []: numberOfBottles = 106
print("%d" % numberOfBottles)

Use %s for string values

In []: title2="Price:"
print("%-10s" % title2)

Multiple Format Speci�ersMultiple Format Speci�ers
One can have more than one format speci�er in the format string
In this case, the variables to the right of the string format operator % need to be
included between parentheses and separated by commas.

In []: quantity = 203
price = 183.4
title1 = "Quantity:"
title2 = "Price:"
print("%10s %10d" % (title1, quantity))
print("%10s %10.2f" % (title2, price))

You can play with different values and see what happens to the output
print("%-10s %10d" % (title1, quantity))
print("%-10s %10.2f" % (title2, price)) # Strings are left aligned, numbers
are right aligned

print("%10s %-10d" % (title1, quantity)) # Strings are right aligned,
numbers are left aligned
print("%10s %-10.2f" % (title2, price))

print("%-10s %-10d" % (title1, quantity)) # Strings and numbers are left
aligned
print("%-10s %-10.2f" % (title2, price))

String Format OperatorString Format Operator

The following statement

In []: quantity = 24
total = 17.29
print("Quantity: %d Total: %10.2f" % (quantity, total))

produces

Student ActivityStudent Activity
What is problematic about the following statement sequence?

In []: userInput = input("Please enter the number of cans")
cans = int(userInput)

Student ActivityStudent Activity

In []: # To Print Bottles and Cans
bottles = 8
cans = 24
Insert your solution here

In []: # Different solutions:
print("Bottles: %8d" % bottles)
print("Cans: %8d" % cans)

print("Bottles: %8d" % bottles)
print("Cans: %11d" % cans)

print("%-8s %8d" % ("Bottles:", bottles))
print("%-8s %8d" % ("Cans:", cans))

